

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to maximize yield?
- How does wastewater injection affect groundwater system
- How will stream restoration affect groundwater system?

Stakeholders

Department of Water Supply

West Maui Land Company, Inc.

Wailuku Water Company

Hui o Na Wai `Eha

Groundwater Availability Study Approach

- Collect and analyze hydrologic data
- Estimate groundwater recharge
- Develop and calibrate numerical groundwater model
- Predict future salinities and water levels with current and redistributed pumping conditions

Climate Data

Water-Level Data

Measuring point resurvey

Benchmark elevation using GPS

Water-level measurement

Synoptic Water-Level Surveys

Quantify Groundwater Discharge to Streams

Estimate Recharge

Create Numerical Model

Match Observed Water Levels

Match Observed Salinity Profiles

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to

maximize yield?

How does wastewater injection affect groundwater system

 How will stream restoration affect groundwater system?

Future results at current rates

0.25

0.5

1.0 Mgal/d

less than 1% from 1 to 2.5% more than 2.5%

Future results at projected rates

0.25 0.5 1.0 Mgal/d
less than 1% from 1 to 2.5% more than 2.5%

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to maximize yield?
- How does wastewater injection affect groundwater system
- How will stream restoration affect groundwater system?

Sites where withdrawal was tested

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to maximize yield?
- How does wastewater injection affect groundwater system
- How will stream restoration affect groundwater system?

Future results including new well locations and rates

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to

maximize yield?

How does wastewater injection affect groundwater system

 How will stream restoration affect groundwater system?

Future results at projected rates

Future results without injection well

- Are current pumping rates sustainable?
- Where should we drill to get more water?
- How should we redistribute pumpage to maximize yield?
- How does wastewater injection affect groundwater system
 - How will stream restoration affect groundwater system?

Future results with stream restoration

Scenario 5 Waihe'e - 3.50 'lao - 19.14 Waikapū - 4.5 (0.5) 150 years Kahului Area with sediments at sea level Ma'alaea

12.3 Mgal/d recharge

Value of Stakeholder Process

- Model helps stakeholders understand how their actions will impact each other
- Stakeholders shared future development plans to better understand cumulative impacts on the water resource
- Eases access and data sharing concerns when all stakeholders are engaged
- No surprises at the end of the study

Summary

- Groundwater models help to answer management questions developed with stakeholder input
- Current pumpage distribution not sustainable for selected wells
- Redistributed pumpage can be sustainable
- Injection locally reduces saltwater intrusion
- Stream restoration could improve salinity in some wells

